ICASE

SAGA

k2l

A System To Automate the Management of Software Production

(NASA-CR-185784) SAGA: A SYSTEM TO AUTOMATE N90O-70096

THE MANAGEMENT OF SOFTWARE PRODUCTION
(ICASE) 14 p

Unclas
00/61 0224387

Roy H. Campbell
- and

Paul G. Richards

Report No. 80-36
December .16, 1980

A INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
¢ NASA Langley Research Center, Hampton, Virginia

Operated by the

UNIVERSITIES SPACE 4 RESEARCH ASSUCIATION

SAGA

A System to Automate the Management of

Software Production

Roy H. Campbell
Univernsity of 1LLinodis

and

Paul G. Richards
Univernsity of TLLInoLis

ABSTRACT

SAGA is a software development system designed to integrate software
production tools and techniques into a flexible management system through
the use of special attributed grammars to represent management schemes.
Both the software life cycle and project components are described by formal
grammars. This formalization will aid understanding of management tech-
niques for complex projects and encourage the automation of repetitive and
tedius managerial tasks. Project direction and management is monitored
by SAGA from inception through completion and allows identification and
scheduling of critical events along with integration of project specifica-
tion, design, implementation, certification, and maintenance. The SAGA pro- .
ject is expected to have a particularly positive impact on quality software

production for reliable computer applications.

This research was partially supported by NASA Grant NSG-1471 at the
University of Illinois and by NAS1-14472 while the authors were in residence
at ICASE, NASA Langley Researcl\ Center, Hampton, VA 23665.

N A &M/WL

1 Introduction.

The process of software design, production, and maintenance follows =2
pattern of activity often referred to as the software lifecycle. The ranage-
ment of the lifecycle is critical to the success of the eventual software pro-

duct [Brooks, 75]. The response to this critical management problem has bean

the evolution of Software Engineering. Software Engineering has irproved the

production of high-quality software through the use of new tools (Jencen &
Tonies, 79]. Methodologies to improve design, programming, and maincenanca
have also been proposed. The effectivenass of these tools depends on the
proper managenent of information they produce. The SAGA project proposas a
method of 1integrating many of these software production tools and techniques

into a flexible, formal management system for software development.

1.1 Geals.

The goal of the SAGA project is the development of a formal management
methodology and system that will enhance production of complex, reliable, cer-
tifiable software. Complex software is typified by long development, interac-
tion between several developers, complex module interfaces, and requirements
for auditing, certification, and quélity. We view software management as the
recogni;ion of valid sequences of (perhaps concurrent) activities in a
software lifecycle. Certification of a software product corresponds to the
recognition of a valid history of software development, verification, and
validation. A satisfactory system for development of such software requires:

® Recognition of valid sequences of activitlies in software lifecy-
cle. ’

e

Consistent application 4of a well defined management policy
throughout the life of the project.

The ability to ascertain development status of the software pro-
ject, and retrieval of project information.

Automation of repetitive and tedious management tasks (e.g.,
auditing, version control).

Automated identification of intermodule dependencies between and
within project phases.

Desirable attributes of this kind of software development systenm

include:

1.2

® Machine processable specificaticn, design, and implementation

languages.

Centralized and coordinated storage and processing of all project
information (e.g., requirements, specifications, designs, data,
source and object code, testing information, documentation, desizn
decisions).

Appropriate communication and documentation tools (e.g., interuser
communication, intraproject communication, communication between
users and the management system).

Ability to integrate already developed tools (e.g., automated pro-
gram verifiers, test data generators, optimizers, performance
analyzers).

Checking of the consistency of intermodule dependencies.

Other Systems.

Many systems have been developed to aid software development.

Among

them are CADES [Pratten, 78], Bell Labs’ Unix/Programmer’s Work Bench

[Dolotta, et al., 78], and Gandalf [Habermann, 79]. Each of these systems

satisfies some of the criteria above.

1.2.1 CADES.

The CADES (Computer Aided Development and Evaluation) system was
developed at International Computers Limited as an operating system develop-
ment aid. It is composed of a database, a language interface called SDL, and a
formalism for transformations of problems called "Structural Modeling".
Structural modeling specifies the relations between data and the objects that
manipulate the data and supports refinement of both the relationships and the
objects until an implementation is realized. The database 1is wused to store
these relationships and maintain auditing histery on the refinements that have
been applied. CADES provides faciiities for project organization, version
control, interfaces to compilers/linkers for automatic invocation after module
modification, and facilities for including other tools for further analysis of

the project database.

1.2.2 PWB.

The Programmers Work Bench is an adaptation of the UNIX operating sys-
tem to the needs of 1large software development projects. PWB provides an
efficient programming environment that is separated from the system on which
the programs are to be executed. It provides additional tools for software
development, 1including a Source Code Control System [Rochkind, 75] and remote
job entry software. Unix provides facilities for editing & file storage,
document preparation, and some user _communications. SCCS provides version

control and auditing of modules of source code, documentation, or test data.

l.2.3 Gandalf.

Gandalf is an interactive software development system for the ADA pro-~
gramming language. A syntax oriented editor permits entry of programs. The
language INTERCOL and software development contrel facility of Gandalf is
described in ([Tichy, 80]. INTERCOL is one of a class of languages known as
Module Interconnection Languages. INTERCOL represents the structure of sys—
tems by describing module interfaces. Interface consistency is maintained by
type checking between modules and notifying appropriate developers when incon-
sistencies are found. INTERCOL also has the ability to descrite multiple ver-

sions of software using a concept of "families" of modules and systems.

1.3 Analysis of Other Systems.

No system presently solves the problem of managing software develop-
ment 1in a complete and satisfactory manner. The isolated collection of tools
in PWB require the programmer to remember important procedures and to use the
tools correctly. Structure-based systems such as INTERCOL and CADES attempt
to restrict the software development process to ensure that inter-module
interfaces are correct and consistent. Neither system integrates the restric-
tions with the target source code or extends automated management to all
phases of the project. Our proposal combines the various software development

system approaches into a flexible and effective system.

2 The SAGA System.

2,1 Approach.

The SAGA system provides an integrated approach to the managemeﬁt of
the software production process by combining various exiéting techniques for
recognizing, representing, and analyzing formal specifications. Its primary
components are:

© Formal representation of management policy by management grammars

(LALR(1l) ‘attributed’ BNF grammars which use events in the
software life cycle as terminal svambols).

© Primitives for specifying module structures, system structures,
and events that occur in the lifecycle,

© A central database with provisions for storage of all project
‘related information.

6 An inter-project library for sharing code, data, and development
procedures.

© Formal specification and constraint of database manipulation(s)
via development grammars. The formal specification allows such
features as automatic recompilation and auditing.

© Formal representations of and uniform interfaces between specifi-
cation, design, and implementation languages to permit mechanical
consistency checking within and between phases in the software
life cycle.

o User oriented communication facilities that include not only the
ability to '"talk" and "mail" between users but also archival

notesfile facilities to record policy decisions and allow discus-
slons to take place in writing in a machine readable form.

The management and development grammars specify the sequence of
acceptable events in the software project from its inception through 1its com—
pletion. Eveants can be generated by programmer interaction or by the partial
parsing of a sentence of a grammar. The management grammar represents policy

and its terminal symbolc are events generated by the programmer or by the sys-—

tem. As sentences of the language specified by the management grammar are
parsed, different management primitives are invoked. These primitives can
start subtasks controlled by other management grammars, declare events to
higher level tasks, or invoke specific software tools controlled by develop-
ment grammars. The development grammars are used to control accéss to
specific tools such as compilers and editors. This hierarchical management
system can be used to configure complex and concurrent project development -
schemes. Tracing of the parsing can be done to any granularity, thus allowing
auditing to any level, and the construction of complete, detailed records of

activity completion.

The database manipulation routines have, as integral components, book-
keeping routines which audit intermodule references and ensure consistency
through the project. This level of bookkeeping is required to simplify recog-
nition of unconsidered specifications or uncoded designs and issue requests

for thelr completion.

Information in the SAGA system should be represented in a machlne pro-
cessable form, i.e., high level language. This allows identification of the
events that are considered important to the management policy. It 1is also
expected that investigations into automated analysis of project phases such as
validating a design for consistency with its specification will require that
specifications and design be represented in a high level language. We believe
the SAGA database could be a useful tool for the future development of such
automated analysis. Management an; development grammars based on the syntax
of the specification, design, and implementation of high-level languages allow
SAGA to control project development to the individual statement level if

required.

2.2 Applications.

The managenent schemes employed in a SAGA development system are
intended to enhance human engineering aspects of software production. For
software development of applications which must be very reliable, the ménage—
ment schemes can Impose a precise and rigid development discipline. Alterna-
tively, SAGA might provide an envirconment for rapid development of scientific .
or research programs that do not require such rigid control. The system can
be used to enhance the productivity of the system developer by providing on-
line project informacion, coordinating efforts and module sharing among teans,
prompting for completion of standardized documents, cross referencing between
phases of the project, providing status reports of the project, and sharing

modules between projects.

Since the management policies for the project are explicitly stated
(by the management grammars and the attributes on the projecg languages) and
the policies are enforced by the software tools themselves, validation of
software produced under the system is much simpler. It is possible to log
every operation taken during the development in order to satisfy strict audit-
1ng procedures. Formal structuring of the development process may allow more
rigid validation assumptions to be made (by either automatic or manual theorem

provers) about specifications and ceding of modules.

The SAGA system is designed to direct programmer activity without
imposing excessive restraint. It is expected that managers will recognize the
nend for balance between programmer control and freedom. SAGA provides an

excellent vehicle for cxperimentation in various management policies and can

be used to analyze the effects of those policies.

2.3 Example.

Below are some grammar fragments for a hypothetical SAGA system .that
control updates to project source code. A single management grammar specifies
version and release policy. A development grammar controls updates to source
modules. The grammar 1s represented using the usual BNF meta-symbols {} to
denote repetition. [x] indicates semantic action "x" 1is to be performed

(described in the narrative below). Terminal symbols which are events are

represented as upper case letters between quotes:

The Management Grammar

<{new versiond> ::= <{initialize modify> <modify module> <release>
<initialize modify> ::= '"NEW_VERSION" [1]
<modify moduled> ::= { <new code> <validation & verificationd> }+

<new code> ::= { "CODE" [2] }+ "CODE_COMPLETE" [3]

<validation & verification> ::= "VERIFY" [4] "VERIFY COMPLETE"

{release)> ::= "RELEASE" [5]

The Development Grammar

{coded> ::= { { <module work> }+ <check consistency> }* "DONE" [6]
<module work)> ::= "EDIT" [7]

{check consistency> ::= "CHECK" [8]

The events used by this example are described below:

NEW _VERSION - The project manager wishes to authorize a change to a source
module, and declares this event.

CODE - The project manager indicates changes may proceed by declaring this
event.

CODE_COMPLETE - This event is requested by the project manager when all
requests for new coding have been made.

VERIFY - Project manager indicates that the modification is approved and test-

ing should start by declaring this event.

RELEASE - Project manager can release the tested module as a new version by

declaring this event.

DONE - A programmer declares this event when all modifications to the module

are complete.

EDIT - Raised by invoking an editor on the source module.

CHECK - Programmer uses a compller or analyzer on the source module.

Under a SAGA system using these grammars, a possible sequence of

events is described below:

1)

11)

111)

iv)

v)

vi)

vii)

Someone requests a change to a source module. The Project manager iadi-
cates that a change is to occur by declaring the "NEW_VERSION" event.
Management primitives favoked at [1] request a reason and description of
the change from the project manager, which will be stored in the new
version’s documentation.

The project manager declares one or more '"CODE" events. Primitives
invoked at {2] request the name of thc module and the programmer assigned
to make the change. A temporary copy of the module is created. The pro-
grammer 1s authorized to use the development grammar to access the tem-
porary copy. The system uses the development graamar independently and
asynchronously of the management grammar. After the '"CODE_COMPLETE"
event, the management grammar primitive at [3] waits for all coding sub-
tasks to complete.

The programmer 1lanvokes the editor, which declares "EDIT". Primitives at
[7] check his authorization and allows the editor to proceed.

After editing, the programmer uses a compiler to check the source module
for errors. This invokes primitives at {8] that make sure no undefined
subroutines are referenced.

After the programmer is satisfied that the changes are correct, he
declares the '"DOWE" event, which causes primitives at [6] to terminate
the subtask using the development grammar.

The project manager 1s notified that the modules are changed, and 1is
allowed to declare event "VERIFY" to start verification of the module.
Primitives at [4]) start another development grammar for verification.
The project manacer waits until the "VERIFY CCOMPLETE" event is declared
by the verification subtask. -

Verification is completed and "VERIFY COMPLETE" is declared. The manager
1s notified that the module is ready, and declares the '"RELEASE" event.

A h

-l

-10-

Primitives at [5] make the temporary copy into a new release in the data-
base catalog, notifying the appropriate users that the new release is
complete.

3 Prototype.

A prototype SAGA system is being implemented in Pascal. It will per-
mit the entry of project information and control of the development process in
both a batch and timesharing environment. An interactive editor will promote
immediate capture of programming and design decisions. A subset of the com-
mands avallable to the interactive editor will be designed to process batch er
file oriented input to permit remote preparation of large volumes of program
material or use of existing material. Editors wusing table driven LALR(l)

parsers will allow entry end recognition of requirements, designs, manageument,

(%]

and programs. Editor commands will allow manipulation of the parse tree
[Teitelbaum, 79]. The parsers will drive a syntax directed translation schenme
associated with each grammar. The translation scheme will interface to
management primitives that control the database and the information it con-
tains. 1Initially, the management primitives will be encoded as Pascal code

segments.,

SAGA editors will be constructed automatically wusing two tools: a
table generator and skeleton editor. This approach will facilitate experimen-
tation with new specification, design, and management languages while ensuring
reliable 1implementation. New progr;mming languages can be included in a SAGA

system with minimal overhead. The prototype SAGA system includes both a gen-

erator and a skeleton editor.

The prototype SAGA software management system for PASCAL is being coa-

.

A s L

~11-

structed to test the efifectiveness of the system and will include management
grammars and the use of example requirements and design languages. In partic-
ular, the management grammars will support control of versions and concurreat
project development activities. Various tools such as the project data base,
compilers, mail, notes files, and documentation preparation systems will be

integrated into the eventual prototype SAGA system for PASCAL.

4 Conclusion.

The formalization of management Iin software development projects will
improve understanding of the project lifecycle and strengthen the validity of
software certification. The SAGA system provides an approach te the automatic
generation of software development systems and the eventual formalization of
management schemes. Management of the development process can be applied to
all 1interactions and 1information in the project from the moment of entry to

the computer through its lifecycle.

Although considerable research and development is required to realize
a production version of SAGA, the prototype specification suggests that such
systems can be constructed and that management schemes for the production of
software can be described using augmented grammars. We welcome comments,
suggestions, and exanmples of management schemes that have been applied to

actual software production projects..

ACKNOWLEDGMENT

The authors would like to acknowledge the helpful comments of Martin McKendry
and John Knight.

-12-

6 References.

[Brooks, 75] Brooks, F.P., The Mythical Man Month, Addison Wesley, Reading,
MA., 1975.

[Dolotta, et al, 78] Dolotta, T.A., R.C. Haight, and J.R. Mashey, "The
Programmer’s Workhench", Bell System Technical Journal, Vol. 56, YNo. 6,
July-August 1978, pp. 2177-2200.

[Habermann, 79] "The Gandalf Project", Presentation at the Software Tools

Workshop, Pingree Park, Colorado, May 1979.

[Jensen & Tonies, 79} Jensen, Randall and Charles Tonies, Software Engineer-
ing, Prentice-Hall, Engzlewood Cliffs, New Jersey, 1979.

sare Develcpment Systen', Internal

Pratten, 73] Pratten, G.D., "The CADES Soft:
Ltd, {idsgrove, Strolke-on-TIrent, XLag-

Document, International Conmputers L
land, 1978.

[Rochkind, 75] Rochkind, M.J., "The Source Code Control System'", IEEE Transac-
tions on Software Engineering, SE~1, December 1975, pp. 364-370.

[Teitelbaum, 79} Teitelbaum, T., "The Cornell Program Synthesizer: A Syntax
Directed Programming Environment”, SIGPLAN Notices, Vol 14, No. 10,
October 1979

{Tichy, 80] Tichy, Walter F., "Software Development Coutrol Based on Systenm
Structure Description", Carnegie-Mellon University Department of Computer
Science Technical Report CMU-CS-80-120, January 1980.

o]

